49 research outputs found

    Aberrations of the point spread function of a multimode fiber

    Get PDF
    We investigate the point spread function of a multimode fiber. The distortion of the focal spot created on the fiber output facet is studied for a variety of the parameters. We develop a theoretical model of wavefront shaping through a multimode fiber and use it to confirm our experimental results and analyze the nature of the focal distortions. We show that aberration-free imaging with a large field of view can be achieved by using an appropriate number of segments on the spatial light modulator during the wavefront-shaping procedure. The results describe aberration limits for imaging with multimode fibers as in, e.g., microendoscopy.Comment: 10 pages, 6 figure

    Cavity sideband cooling of trapped molecules

    Get PDF
    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case where the IR transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radio-frequency or optical trapping potential, depending on whether they are charged or neutral, and confined inside a high-finesse optical resonator which enhances radiative emission into the cavity mode. Using realistic experimental parameters and COS as a representative molecular example, we show that in this setup cooling to the trap ground state is feasible

    Cavity-Enhanced Rayleigh Scattering

    Full text link
    We demonstrate Purcell-like enhancement of Rayleigh scattering into a single optical mode of a Fabry-Perot resonator for several thermal atomic and molecular gases. The light is detuned by more than an octave, in this case by hundreds of nanometers, from any optical transition, making particle excitation and spontaneous emission negligible. The enhancement of light scattering into the resonator is explained quantitatively as an interference effect of light waves emitted by a classical driven dipole oscillator. Applications of our method include the sensitive, non-destructive in-situ detection of ultracold molecules.Comment: v2: 13 pages, 7 figures, small changes to the text, extended description of the theoretical mode

    Characterization of a Quantum Light Source Based on Spontaneous Parametric Down-Conversion

    Get PDF
    We have built a quantum light source capable of producing different types of quantum states. The quantum light source is based on entangled state preparation in the process of spontaneous parametric down-conversion. The single-photon detection rate of eight-hundred thousand per second demonstrates that we have created a bright state-of-the-art quantum light source. As a part of the characterization we measured two-photon quantum interference in a Hong-Ou-Mandel interferometer.Comment: 33 page

    Spatiotemporal focusing through a multimode fiber via time-domain wavefront shaping

    Get PDF
    We shape fs optical pulses and deliver them in a single spatial mode to the input of a multimode fiber. The pulse is shaped in time such that at the output of the multimode fiber an ultrashort pulse appears at a predefined focus. Our result shows how to raster scan an ultrashort pulse at the output of a stiff piece of square-core step-index multimode fiber and in this way the potential for making a nonlinear fluorescent image of the scene behind the fiber, while the connection to the multimode fiber can be established via a thin and flexible single-mode fiber. The experimental results match our numerical simulation well.Comment: V2:29 pages including appendices, 9 figures (1 new), several updated, many improvements throughou

    Cavity-Enhanced Rayleigh Scattering

    Full text link
    We demonstrate Purcell-like enhancement of Rayleigh scattering into a single optical mode of a Fabry-Perot resonator for several thermal atomic and molecular gases. The light is detuned by more than an octave, in this case by hundreds of nanometers, from any optical transition, making particle excitation and spontaneous emission negligible. The enhancement of light scattering into the resonator is explained quantitatively as an interference effect of light waves emitted by a classical driven dipole oscillator. Applications of our method include the sensitive, non-destructive in-situ detection of ultracold molecules.Comment: v2: 13 pages, 7 figures, small changes to the text, extended description of the theoretical mode

    Collisional effects in the formation of cold guided beams of polar molecules

    Full text link
    High fluxes of cold polar molecules are efficiently produced by electric guiding and velocity filtering. Here, we investigate different aspects of the beam formation. Variations of the source parameters such as density and temperature result in characteristic changes in the guided beam. These are observed in the velocity distribution of the guided molecules as well as in the dependence of the signal of guided molecules on the trapping electric field. A model taking into account velocity-dependent collisional losses of cold molecules in the region close to the nozzle accurately reproduces this behavior. This clarifies an open question on the parameter dependence of the detected signal and gives a more detailed understanding of the velocity filtering and guiding process

    Programmable two-photon quantum interference in 10310^3 channels in opaque scattering media

    Get PDF
    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports 10610^6 transmission channels. By adaptive spatial phase-modulation of the incident wavefronts, the photons are directed at targeted speckle spots or output channels. From 10310^3 experimentally available coupled channels, we select two channels and enhance their transmission, to realize the equivalent of a fully programmable 2×22\times2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programmed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be non-unitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication
    corecore